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biquitous ensing

e 12 graduate students (from 4 countries, 3 alumni) + 7
undergraduates (2014-2018)
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B Introduction to USLab
B Recent Scientific Research

B Blood Glucose Monitoring Based on Smart Phone PPG Signals
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Blood Glucose Monitoring Based on

Ssmart Phone PPG signals
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B Classification of valid and invalid samples
B Only smartphone camera used to acquire the data

B Valid samples classified into 2 glucose groups

B Painless, Cost effective, Portable, Simple Blood Glucose Ranges (mmol/l)

Gl 3.9-5.6
G2 5.7-1.2

B No need for individual re-calibration
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Raw Data Acquisition

Lab-built PPG module

e

Video recording
using
smartphone

camera Recorded video A video frame
extracted

Red, Green and Blue
components of the frame
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PPG Signal Extraction
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PPG Signal Processing
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Classification of Valid and Invalid Samples

Single Period
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Feature Extraction
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Glucose Group Classification

B Classification using Subspace KNN

B Feature-matrix for the dataset was divided into training and testing
dataset randomly. 5-fold cross validation.

B Bagged trees, RUS booster trees, Decision trees, and Subspace
KNN

Training Testing

i
 Gluometer
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B The accuracy of invalid single period classification was
found to be 98.2%.

B The overall training accuracy was found to be 86.2%.

Overall Accuracy Invalid Sample Classification

Subspace KNN 86.2% 98.2%
RUS Boosted Trees 85% 90.2%
Bagged Trees 86% 96.7%
Decision Trees 80.1% 83.6%

[1] Sarah Ali Siddiqui, Yuan Zhang*, Zhiquan Feng and Anton Kos, A Pulse Rate Estimation Algorithm Using PPG and
Smartphone Camera, Journal of Medical Systems (Springer), vol. 40 (126), 2016. DOI: 10.1007/s10916-016-0485-6. (IF 2.456)

[2] Sarah Ali Siddiqui, Yuan Zhang*, Jaime Lloret, Houbing Song and Zoran Obradovic, Pain-free Blood Glucose Monitoring
Using Wearable Sensors: Recent Advancements and Future Prospects, IEEE Reviews in Biomedical Engineering, %% HxDOI
10.1109/RBME.2018.2822301.

[3] Sarah Ali Siddiqui, Yuan Zhang*, Chengyu Liu and Po Yang, Non-invasive Blood Glucose Estimation Using Smartphone
PPG and Subspace KNN, Computer Methods and Programs in Biomedicine (Elsevier), under review.
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Wrist Pulse Signal Processing

& Lung Cancer Diagnosis

B Collaborate with Shandong Academy of Chinese Medicine

B Baseline Wander Removal & Segmentation
m ISW

B Feature Extraction Based on Jin’s Pulse Diagonosis
W 26 features

B Classification
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Wrist Pulse Signal Processing
& Lung Cancer Diagnosis
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Wrist Pulse Signal Preprocessing
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Iterative Sliding Window

Pseudocode

Algorithm: iterative sliding window (ISW)
Initial value: n = 0; count =0

Get the main frequency f of the entire signal
by using wavelet transform.

Set a window with the size Size = 0.5*1/f.

Slide the window to find the minimum of
each window. The values of these local
minima and their corresponding indexes are
recorded as y and x.

Fit the cubic spline function to the baseline
x and y, and save the value in the array
baseline.

The number of points in y fitting baseline-
signal <0 is represented as num; If (n ==
num) Count++;

Separate these points when the index is not
continuous. Get the real minima m from the
values with continuous indexes and find e in
y that fits e = min (|baseline-y|). Replace e
with m;

(x,y) = Get_valley (x, y, Size). n = num; r—

Iterate steps 4-7, if Count < 10.
Segment the signal according to x.

v v Vv v v Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv v v v

Get_valley function: to find real valleys
Input: Valley _index, Valley value, Size
Initial value: mx = ones (3, n), n = length (Valley _value)
Output: Valley x, Valley y
mx (1, :) = Valley _index;
fori=2:n

if (mx (1, 1) - mx (1, i-1) <= Size)

if i==2][ mx (2,i-2) ==1)

mx (2, i-1) = 0;
end
end
end
fori=2:n
if (mx (2,1) ==1)
if (mx (1, 1) —mx (1, i-1) <= Size)
mx (3,1) =0;
end
else
if (mx (2, 1) ==0)
mx (3,1) =0;
end
end

Valleys_x = find (mx (3, :) == 1);
Valley_y = Valley_value (Valleys_x);
Return Valley_x, Valley y;
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JPD Based Feature Extraction
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Classification

» Training Set: 3871 Samples;
» Testing Set: 8508 Samples

o Classifiers:
e K Nearest Neighbors (KNN)
e Support Vector Machine (SVM)
e Decision Tree
e Discriminant

Classifier Diagnosis Accuracy
Linear SVM 78.13%
Coarse Gaussian SVM 71.88%
Fine KNN 84.38%
Cosine KNN 87.50%
Subspace discriminant 75.00%
Subspace KNN 87.25%
Simple tree 65.63%
Quadratic discriminant 90.63%
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Classification

4 Comparison of classification accuracy of using the signals acquired from Cun,

Guan, and Chi
Classifier Diagnosis Accuracy
Cun (Guan Chi

Linear SVM 88 .46% 80.00% 88.00%
Coarse Gaussian SVM 96.15% 88.00% 88.00%
Fine KNN 96.15% 68.00% 88.00%
Cosine KNN 96.15% 72.00% 88.00%
Subspace discriminant 88 46% 84.00% 76.00%
Subspace KNN 65.38% 64.00% 88.00%
Simple tree 73.08% 64.00% 84 .00%
Quadratic discnminant 73.08% 76.00% 84.00%

[1] Zhichao Zhang, Yuan Zhang*, Lina Yao, Houbing Song* and Anton Kos, A Novel Wrist Pulse Signal Processing for Lung
Cancer Recognition, Journal of Biomedical Informatics (Elsevier, IF 2.753), vol. 79, pp. 107-116, 2018. &t X

[2] Zhichao Zhang, Xujie Zhuang, Yuan Zhang* and Anton Kos, Computerized Radial Artery Pulse Signal Classification for
Lung Cancer Detection, Proceedings of the 7th International Conference on Information Society and Technology, Kopaonik,
Serbia, vol. 1, pp. 275-278, March 2017.

[3] Zhichao Zhang, Yuan Zhang*, Wei Jin and Anton Kos, KPD Based Signal Preprocessing Algorithm for Pulse Diagnosis,
Proceedings of IEEE International Conference on Information and Knowledge in the Internet of Things 2016 (1IKI12016), Beijing,
China, pp. 299-304, Oct 2016, DOI 10.1109/11K1.2016.75.

[4] SR, EFGE. M. K. &fF. FIE, ETSRIKFRKERGESAETERTERN RS, RULHHES
20171081152.4
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International Collaboration

B |[EEE Senior Member, 2014.4- : ACM senior member, 2016.5-

IEEE Access Associate Editor, 2015.9-present
B Internet of Things (Elsevier) Associate Editor, 2018.6—present

B |EEE Internet of Things Journal Sl on Wearable Sensor Based Big
Data Analysis for Smart Health, (Leading Guest Editor) , in
progress.

B http://ieee-iotj.org/wp-content/uploads/2017/11/CFP-Wearable-Sensor-Based-
Big-Data-Analysis-for-Smart-Health.pdf

B Smart Health (Elsevier) S| on Wearable Sensor Signal Processing
for Smart Health, (Leading Guest Editor), under production.

B Yuan Zhang, Fatos Xhafa, Carolina Ruiz and Lina Yao, Special Section Editorial:
Wearable Sensor Signal Processing for Smart Health, Smart Health, vol. 5-6, pp.
1-3, 2017. DOI 10.1016/j.smhl.2018.03.004.
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International Collaboration

B |IEEE Access Sl on Big Data Analytics for Smart And Connected

Health (Leading Guest Editor)

B Yuan Zhang*, Lin Zhang, Eiji Oki, Nitesh V. Chawla and Anton Kos, Special
Section Editorial: Big Data Analytics for Smart and Connected Health, IEEE
Access, vol. 4, pp. 9906-9909, 2016, DOI: 10.1109/ACCESS.2016.2646158.

B Annals of Telecommunications (Springer) Sl on Healthcare on
Smart and Mobile Devices (Leading Guest Editor)

B Health Care on Mobile Devices, Annals of Telecommunications, vol. 71(9),
October 2016.

B International Journal of Ad Hoc and Ubiquitous Computing
(InderScience) Sl on Application-Oriented Protocol Design for
Wireless Ad Hoc Networks (Leading Guest Editor)

B Application-Oriented Protocol Design for Wireless Ad Hoc Networks, Int. J. of
Ad Hoc and Ubiquitous Computing, vol. 16(1), 2014.
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International Collaboration

B TPC Chair

B |EEE/ACM Big Data Analytics for Smart and Connected Health 2016/2017/2018
(BIGDATA4HEALTH 2016/2017/2018), http://www.bigdatad4health.org

B TPC Member

B 10+ international conferences including InfoCom, ICC, GlobeCom, MASS,
SmartComp, etc

B Reviewer

B 30+ top-tier journals of the IEEE, Elsevier, Springer, ACM, InderScience, Weily,
etc.

B Invited talks
B Department of Computer Science, Georgia State University, USA
B Faculty of Electrical Engineering, University of Ljubljana, Slovenia
B Department of Computer Science, University of Otago, New Zealand

USLab (http://uslab.ujn.edu.cn/) @ University of Jinan
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International Collaboration

In recently years Dr. Yuan Zhang has formally collaborated with
international colleagues from 10+ countries including USA, United
Kingdom, Slovenia, Canada, New Zealand, Australia, Spain,
Pakistan, Korea, Chile, Serbia, Bangladesh, etc

B More details available at http://uslab.ujn.edu.cn/index.html.

B |EEE Internet of Things Journal Sl on Wearable Sensor Based Big Data Analysis
for Smart Health (Leading Guest Editor).
B Roozbeh Jafari @ Texas A&M University, USA
B Jinsong Wu @ Universidad de Chile, Chile
B Winston Seah @ Victoria University of Wellington, New Zealand
B Joel J.P.C. Rodrigues @ National Institute of Telecommunications, Brazil
B Yunchuan Sun @ Beijing Normal University, China

USLab (http://uslab.ujn.edu.cn/) @ University of Jinan
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International Collaboration

B China-UK Young Researcher Bilateral Workshop on Mental
Health Technologies, NSFC- British Council (UK)

Collaborated with Benny Lo (Imperial College London)
Setp 7-9, Jinan, China

B Objectives of the workshop:

Promote the research in mental health technologies and support the growth of
the field;

Discuss the challenges in mental healthcare and opportunities for technologies
to improve the care of mental ilinesses;

Facilitate new collaborations between China and UK institutions;

Establish data and knowledge sharing strategies between institutions and
countries;

Facilitate collaborations with industries, hospitals, and NGOs.

USLab (http://uslab.ujn.edu.cn/) @ University of Jinan



International Collaboration

B Four Mentors

Prof Guang-Zhong Yang Prof Bin Hu (Chinese

(Fellow of the Royal National

Acac_iemy.of Recruitment
Engmee“ng; UK; Program of Global
Chlnese National Experts T- A i)
Recruitment

Programme of Global

ExpertsT A 1f%l)

Prof Tom Denning Prof Tianzi Jiang
(Executive Director of (Changjiang Scholars
Cambridgeshire & Program <L 3)

Peterborough NHS

Foundation Trust ) ‘
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International Collaboration

B Participants

China side: 18 young researchers from 10+ universities/institutions
UK side: under recruitement

B Some Guests

Aiguo Song (R#ZH), Dean of School of Instrument Science & Engineering,
Southeast Univ.

Jianqging Li (ZEE), Vice President of Nanjing Medical Univ.

Hongen Liao (B#tR&, Chinese National Recruitment Program), Dept. of
Biomedical Engineering, Tsinghua Univ.

Dahong Qian (X%, Chinese National Recruitment Program), School of
Translational Medicine, Zhejiang Univ.

Ligang Nie (Z£fL3&, Chinese National Recruitment Program for the Youth),
School of Computer Science & Technology, Shandong Univ.

Huansheng Ning (F#4), Vice Dean of School of Computer & Communication
Engineering, Univ. of Science and Technology Beijing

USLab (http://uslab.ujn.edu.cn/) @ University of Jinan
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MRI Image Analysis Using 3D U-Net for Automatic

Brain Tumor Segmentation

B Among brain tumors, gliomas are the most common and
aggressive, leading to a very short life expectancy.

B Goal: To find a deep learning approach to segment glioma
MRI images automatically with high accuracy.

B Method: 3D U-Net extended from the previous U-Net
architecture.

a 32 84
| 644128 a4 64 3

Flair T1 Tlc T2 Ground truth
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Automatic Ventricular Segmentation Based on FCN

B Cardiac MRI is considered as gold standard in cardiac
disease diagnosis especially in left ventricular (LV) and
right ventricular (RV) function estimation.

B Goal: a new approach to segment LV, RV and myocardium
B Preprocessing: data augment, Wiener filtering

B Segmentation: Fully Convolutional Networks

image convl  pooll  convZ pool2 convad poold convd poold convh poold  convi-7
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Segmentation of Parotid Gland in MVCT Using Deep

Learning

B In radiotherapy for nasopharyngeal cancer, the essential
step of analyzing the parotid gland is to segment the
parotid gland in MVCT.

B Goal: Propose a deep learning approach to segment
parotid gland in MVCT automatically with high accuracy.

B Method:

B Using deep learning method, segment parotid gland in processed
MVCT images, and extract parotid gland in original images.

B Find the correlation between texture feature, volume, and clinical
symptoms.

Dictionary learning N\
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Epilepsy Detection and Prediction Based on Wearable EEG

B Epilepsy Detection
B Lightweight & efficient algorithm

B Design reasonable method to extract features, 8 y
select the most prominent features.

B Multi-Classification algorithm
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Cardiac Arrhythmia Classification using deep learning

B Goal: To find a deep learning approach to classify
different types of ECG beats automatically.

B Method: A deep convolutional neural network (CNN) for
cardiac arrhythmias classification
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